Reverse Dual-Ion Battery via a ZnCl2 Water-in-Salt Electrolyte

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

“Water-in-Salt” Electrolyte Makes Aqueous Sodium-Ion Battery Safe, Green, and Long-Lasting

DOI: 10.1002/aenm.201701189 the availability issue of lithium as a natural source, along with potential safety and environmental risks brought by the inflammable and toxic nonaqueous electrolytes. In contrast, sodium (Na) is highly abundant and readily accessible in both earth-crust and ocean. An aqueous Na-ion batteries would be far more economically competitive than LIBs for large-format appl...

متن کامل

A lithium ion battery using an aqueous electrolyte solution

Energy and environmental pollution have become the two major problems in today's society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the neg...

متن کامل

Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte.

A new super-concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra-high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V...

متن کامل

"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries.

Lithium-ion batteries raise safety, environmental, and cost concerns, which mostly arise from their nonaqueous electrolytes. The use of aqueous alternatives is limited by their narrow electrochemical stability window (1.23 volts), which sets an intrinsic limit on the practical voltage and energy output. We report a highly concentrated aqueous electrolyte whose window was expanded to ~3.0 volts ...

متن کامل

Lithium-ion battery electrolyte mobility at nano-confined graphene interfaces

Interfaces are essential in electrochemical processes, providing a critical nanoscopic design feature for composite electrodes used in Li-ion batteries. Understanding the structure, wetting and mobility at nano-confined interfaces is important for improving the efficiency and lifetime of electrochemical devices. Here we use a Surface Forces Apparatus to quantify the initial wetting of nanometre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Chemical Society

سال: 2019

ISSN: 0002-7863,1520-5126

DOI: 10.1021/jacs.9b00617